A1 THE BIG PICTURE

Governance, Policies, Behaviour
Findings from Berlin, Copenhagen, London, Paris, Vienna

Dr. Charlotte Halpern & Prof. Regine Gerike
Understanding Car Use
Conceptual Approach

Source: Own elaboration.
The Peak-Car Phenomenon

- **Daily Car Trip Rates:** In urban areas declining

- **Across Areas:** Car use peaked both in Inner-Urban and Urban Areas

- **On average:** 25% less car trips per tripmaker and day in urban areas (L90s to E10s)

Observations on Aggregate Individual Level

- **Developments:** Surprisingly similar
- **Peak** in E90s (Paris), L90s (Berlin, London, Vienna), E2000s (CPH)
- **Drivers:** Differences and similarities
- **Benefits:** Major societal benefits from reduced car use
- **Unclear:** Local or global peak

Source: Own elaboration based on Wittwer & Gerike (2018). Peak-Car Phenomenon – Components, Drivers, Perspectives. Technical Note No. 2.
Observations transport policy developments

Mass-transit city (stage 1) City as a laboratory (stage 2) Liveable city (stage 3)

Reconciling contradictory interests, competing urban futures
How? Laboratories versus ordinary cities

Cities as laboratories
- small-scale experiments, trial and error
- Promotion of economic incentives
- New mobility services
- Alternative street uses

Optimise existent infrastructures and systems
- New technologies
- Alternative financing
- Contract services with transport companies quantity / quality

How? Gain more autonomy, capacity building

Accumulate policy resources:
- Finances,
- Information & data management
- Authority to enforce rules
- Human resources and expertise
- Keep the tambourine going

Transport policy developments, in practice:
Multi-Layered, Unevenly Spread New Challenges

Timeline Paris & IDF region, © Sciences Po team, CREATE project, A. Carollo, 2016

SenStadtUm, 2013. Berlin traffic facts.
Lessons Learnt from Behavioural Analysis

- **Working persons** (still) main generator of car travel
- **Working** and **young** persons main drivers of peak car
- **Seniors** damp, substantial **cohort** effects
- **Macro Trends** matter
- Advancements in **transport systems** and services
- Availability of **mobility tools** increasing
- New **activity pattern** (ICT, digitization)
- Increasing relevance of **commuting**
- Convergence of car driver trip rates

![Proportion of Part-Time Male Employees to All Employees](chart)

Note: Eurostat (Online-Datencode: Ifsl_eppga), Age Group Employees 20-64 Years,

![Carsharing Operators in Berlin](diagram)

Source: Own elaboration.
Policy Recommendations

• Backbone of urban sustainable transport systems:
 • Integrated land use and transport planning, “5Ds”
 • Dense, high quality transport infrastructure + services
 • Measures restricting car use, ensuring shared street use
• Specific policies for specific person groups, purposes
• Awareness of composition and cohort effects
• Trials as drivers for innovation
• Strengthen institutional capacity
• Regional cooperation for managing commuting
• Each city is unique and needs to finds its way anew again and again

Fiechtner & Menge (2017)
Future Perspectives

MACRO TRENDS
- Framework conditions, composition effects (e.g. changes in population structure)

Governance
- Institutions, politics

Policy Tools and Outcomes
- Drivers for change

Changes in Travel Behaviour
- Short-, Mid-, Long-term changes, maintenance

Aggregated Indicators of Car Use
- Tracking developments above the sea level
Visit the stand of the CREATE project!

Engage with the CREATE team!

www.create-mobility.eu
Thank you!

Dr. Charlotte Halpern, Science Po, CEE, Paris, charlotte.halpern@sciencespo.fr
Prof. Regine Gerike, Technische Universität Dresden, regine.gerike@tu-dresden.de
Dr. Rico Wittwer, Technische Universität Dresden, rico.wittwer@tu-dresden.de